Poly(amino carbonate urethane)-based biodegradable, temperature and pH-sensitive injectable hydrogels for sustained human growth hormone delivery

نویسندگان

  • V. H. Giang Phan
  • Thavasyappan Thambi
  • Huu Thuy Trang Duong
  • Doo Sung Lee
چکیده

In this study, a new pH-/temperature-sensitive, biocompatible, biodegradable, and injectable hydrogel based on poly(ethylene glycol)-poly(amino carbonate urethane) (PEG-PACU) copolymers has been developed for the sustained delivery of human growth hormone (hGH). In aqueous solutions, PEG-PACU-based copolymers existed as sols at low pH and temperature (pH 6.0, 23 °C), whereas they formed gels in the physiological condition (pH 7.4, 37 °C). The physicochemical characteristics, including gelation rate, mechanical strength and viscosity, of the PEG-PACU hydrogels could be finely tuned by varying the polymer weight, pH and temperature of the copolymer. An in vivo injectable study in the back of Sprague-Dawley (SD) rats indicated that the copolymer could form an in situ gel, which exhibited a homogenous porous structure. In addition, an in vivo biodegradation study of the PEG-PACU hydrogels showed controlled degradation of the gel matrix without inflammation at the injection site and the surrounding tissue. The hGH-loaded PEG-PACU copolymer solution readily formed a hydrogel in SD rats, which subsequently inhibited the initial hGH burst and led to the sustained release of hGH. Overall, the PEG-PACU-based copolymers prepared in this study are expected to be useful biomaterials for the sustained delivery of hGH.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of Biodegradable Thermo- and pH-Sensitive Hydrogels Based on Pluronic F127/Poly(ε-caprolactone) Macromer and Acrylic Acid

Several kinds of biodegradable hydrogels were prepared via in situ photopolymerization of Pluronic F127/poly(ε-caprolactone) macromer and acrylic acid (AA) comonomer in aqueous medium. The swelling kinetics measurements showed that the resultant hydrogels exhibited both thermoand pH-sensitive behaviors, and that this stimuli-responsiveness underwent a fast reversible process. With increasing pH...

متن کامل

Synthesis of pH Sensitive Hydrogels Based on Poly Vinyl Alcohol and Poly Acrylic Acid

     In this research, hydrogels based on poly vinyl alcohol and poly acrylic acid blend were prepared which were cross-linked by applied thermal conditions. Afterward, effects of time and heating on water uptake were investigated. The highest water uptake value exhibited by the sample that was heated for 20 min. at 110 ºC was about 2129% after 4 days at equilibrium state. Hydrogels exhibited p...

متن کامل

Biodegradable thermosensitive copolymer hydrogels for drug delivery

Biodegradable thermogelling copolymer hydrogels have great applicative potential in areas such as sustained drug release, gene delivery and tissue engineering. These injectable materials can be implanted in the human body with minimal surgical intervention. The thermosensitive copolymers have been incorporated with a variety of biocompatible and biodegradable components such as poly(D,L-lactic ...

متن کامل

Thermo-Responsive Injectable MPEG-Polyester Diblock Copolymers for Sustained Drug Release

Thermo-responsive diblock copolymers composed of hydrophilic methoxy poly(ethylene glycol) (MPEG) and hydrophobic biodegradable polyesters were prepared for application as injectable drug delivery systems, because they show a thermo-responsive sol-to-gel transition, especially around body temperature, when dispersed in aqueous solutions. The thermogelling hydrogels formed by hydrophobic aggrega...

متن کامل

A Rheological Study of Biodegradable Injectable PEGMC/HA Composite Scaffolds.

Injectable biodegradable hydrogels, which can be delivered in a minimally invasive manner and formed in situ, have found a number of applications in pharmaceutical and biomedical applications, such as drug delivery and tissue engineering. We have recently developed an in situ crosslinkable citric acid-based biodegradable poly (ethylene glycol) maleate citrate (PEGMC)/hydroxyapatite (HA) composi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016